Synthesis of Both Top and Bottom Fragments of (-)-Talaromycin A through Enantiospecific and Diastereoselective Elaboration of Asymmetrized Tris(hydroxymethyl)methane

Giuseppe Guanti,* Luca Banfi, Enrica Narisano, and M. Teresa Zannetti

Istituto di Chimica Organica e C.N.R., Centro di Studio sui Diariloidi, corso Europa 26, I-16132 Genova, Italy

Received August 5, 1992

Asymmetrized tris(hydroxymethyl)methane equivalents of general formula 5 have been employed as chiral building blocks for the enantiospecific and diastereoselective synthesis of both fragments 3 and 4, whose conversion into Talaromycin A was already reported. Preparation of bottom half fragment 3 was achieved through a "protecting group-controlled" stereoselective allylation of an asymmetrized bis(hydroxymethyl)acetaldehyde with allyltributyltin, while the top half fragment 4 was obtained in high overall yield by sequential elongation of two of the three synthetically equivalent masked hydroxymethyl group of 5, via nucleophilic substitution reactions.

Talaromycins A and B¹ are two toxic metabolites produced by Talaromyces stipitatus, a fungus that grows on animal feed produced from chicken litter and which renders the feed toxic to mammals. The toxicity of these compounds is probably due to their ability to block outward potassium fluxes, thus leading to muscle dysfunction. Much synthetic interest has been also stimulated by the fact that they are the first spiroacetals of fungal origin, a structural feature which occurs also in other biologically active substances of great pharmacological interest, such as the milbemycin-avermectin family of macrolide antibiotics.² It is important to stress that the less stable talaromycin A (1), which possesses an axially disposed hydroxymethyl group, can be quantitatively converted into talaromcyin B (2), by acid catalysis. In the last years these molecules have attracted the attention of many synthetic investigators. Efforts on the nonracemic front have culminated in six enantioselective total syntheses.³ In particular a highly convergent synthesis of (-)-Talaromycin A (1) has been realized by Mori et al.^{3c} by assembling the two fragments 3 and 4 corresponding, respectively, to the bottom half and to the top half of 1 (Scheme I).

Examination of the structure of these two fragments suggested that they could both be retrosynthetically disconnected to a common chiral precursor of general formula 5 [asymmetrized tris(hydroxymethyl)methane (THYM*)]. Equivalents of this new chiral building block have recently been obtained by us through a chemoen-

zymatic methodology,^{4a,b,e} and some synthetic applications, demonstrating their peculiar stereochemical properties, have been reported.^{4c,d} In particular, the latent $C_{3\nu}$ symmetry of 5 allows us to prepare in enantiodivergent or diastereodivergent manner all possible stereoisomers of simple derivatives of 5 possessing one or two asymmetric centers. We report here the successful exploitation of 5 in the formal total synthesis of (-)-Talaromycin A via fragments 3 and 4.

Synthesis of the Bottom Half Fragment 3. Our plan for the preparation of 3 required the addition of a suitable acetaldehyde equivalent to an "asymmetrized bis(hydroxymethyl)acetaldehyde", BHYMA* (7) (Scheme II).

 ^{(1) (}a) Lynn, D. G.; Phillips, N. J.; Hutton, W. C.; Shabanowitz, J.;
 Fennell, D. I.; Cole, R. J. J. Am. Chem. Soc. 1982, 104, 7319-7322. (b)
 Hutton, W. C.; Philips, N. J.; Graden, D. W.; Lynn, D. G. J. Chem. Soc.,
 Chem. Commun. 1983, 864.

⁽²⁾ Perron, F.; Albizati, K. F. Chem. Rev. 1989, 89, 1617.

⁽³⁾ Talaromycin A: (a) Midland, M. M.; Gabriel, J. J. Org. Chem.
1985, 50, 1143-1144. (b) Crimmins, M. T.; O'Mahony, R. J. Org. Chem.
1985, 50, 1143-1144. (c) Mori, K.; Ikunaka, M. Tetrahedron 1987, 43, 45-58. Talaromycin B: (d) Iwata, C.; Fujita, M.; Moritani, Y.; Sugiyama, K.; Hattori, K.; Imanishi, T. Tetrahedron Lett. 1987, 28, 3131-3134. (e) Tietze, L. F.; Schneider, C. J. Org. Chem. 1991, 56, 2476-2481. Talaromycins A and B: (f) Smith, A. B. III; Thompson, A. S. J. Org. Chem. 1984, 49, 1469-1471. Racemic syntheses: (g) Schreiber, S. L.; Sommer, T. J. Tetrahedron Lett. 1983, 24, 4781-4784. (h) Kay, I. T.; Bartholomew, D. Tetrahedron Lett. 1984, 25, 2035-2038. (i) Kozikowski, A. P.; Scripko, J. G. J. Am. Chem. Soc. 1984, 106, 353-355. (j) Kocienski, P.; Yeates, C. J. Chem. Soc., Chem. Commun. 1987, 906-907. (l) Schreiber, S. L.; Sommer, T. J.; Sommer, T. J.; Satake, K. Tetrahedron Lett. 1985, 26, 17-20. (m) Baker, R.; Boyes, A. L.; Swain, C. J. Tetrahedron Lett. 1983, 30, 985-988.

^{(4) (}a) Guanti, G.; Banfi, L.; Narisano, E. Tetrahedron Lett. 1989, 30, 2697-2698. (b) Tetrahedron: Asymmetry 1990, 1, 721-724. (c) Tetrahedron Lett. 1990, 31, 6421-6424. (d) Guanti, G.; Banfi, L.; Ghiron, C.; Narisano, E. Tetrahedron Lett. 1991, 32, 267-270. (e) Guanti, G.; Banfi, L.; Narisano, E. J. Org. Chem. 1992, 57, 1540-1554.

A series of aldehydes with this general structure was previously prepared by us^{4e} in both enantiomeric forms⁵ starting from monoacetate 6, which was in turn prepared in excellent ee's through pig pancreatic lipase catalyzed monohydrolysis of the corresponding diacetate.4e Since in 7 the two synthetically equivalent CH₂OR branches are distinguished only by the protecting groups R^1 and R^2 , the achievement of good diastereoselectivity in additions to it requires a "protecting group-controlled asymmetric synthesis". This goal was previously achieved by us through "chelation-controlled" additions, employing two protecting groups that can be classified as "chelating"6 like the (benzyloxy)methyl (BOM) or the ((p-methoxybenzyl)oxy)methyl (PMBOM)⁷ groups or "nonchelating"⁶

like the silvl ethers.⁸ By this approach we have obtained good to excellent results in the addition to aldehydes 7 of dialkyllithium cuprates^{4c,d} and in the MgBr₂-catalyzed addition of allyltributyltin.9 The latter condensation, affording homoallylic alcohols 8a-e in diastereoselectivities ranging from 83:17 to 87:1310 (Scheme II), seemed particularly suited for the synthesis of fragment 3, thanks to the synthetic equivalence of allylmetal compounds with acetaldehyde in aldol-type reactions.¹¹

The relative configurations of major adducts 8a-e were unambiguously established through conversion into cis isopropylidene derivatives 12a and 13 and 14a (for all compounds) or (only for 8d) into trans derivatives 14b and 12b (Scheme II). These acetonides were recognized as such through ¹H and ¹³C NMR analysis. For example in cis compounds J_{4-5} ranged from 2.4 to 2.6 Hz, while J_{5-6} were 1.6-1.7 and 2.6-2.7 Hz. These values suggest an equatorial disposition for the allyl group and an axial disposition for the CH_2OR^2 group. On the other hand, in trans compounds, J_{4-5} were ≈ 10.0 Hz in both compounds, while J_{5-6} were 5.0 and 10.2-10.5 Hz, suggesting an equatorial disposition for the CH_2OR^2 and the allyl groups. The ¹³C NMR data ruled out the intervention of twistlike conformations, since the values for C-2 and for the two methyl groups bonded to it are well in agreement with chair-like conformations.^{12,13} Moreover we have recently had the opportunity to compare the ¹H and ¹³C NMR of several 4-substituted 5-(alkoxymethyl)-2,2-dimethyl-1,3dioxanes bearing various protecting groups and found regular trends along the two diastereomeric series.¹⁴ The values obtained for all acetonides shown in Scheme II are well in agreement with those trends.

Having now in hand a strategy for controlling the relative and absolute stereochemistry of allylation adducts, we applied this methodology for the synthesis of the bottom half fragment 3 of Talaromycin (Scheme III).

In this case we needed an (S)-BHYMA* 7d, which was easily obtained from monoacetate 6 in 66% overall yield by the already reported procedure.^{4e} This aldehyde was then allylated with allyltributyltin under the catalysis of $MgBr_2$ to give homoallylic alcohol (2S,3S)-8d as the main product in 87:13 diastereomeric ratio and in 84% overall yield. The absence of racemization during the allylation reaction was checked through Mosher's ester analysis of

⁽⁵⁾ Although for the sake of brevity Scheme II shows only the Raldehydes 7a-e, we have also prepared the enantiomeric S aldehydes 7а-е

⁽⁶⁾ With the term "chelating protecting group" we mean a group which increases (or at least does not decrease) the Lewis basicity of oxygen, thus allowing, when other conditions are met, the establishment of a cyclic chelated transition state; on the contrary, with "nonchelating protecting group" we denote a group which sensibly decreases (or completely suppresses) the ability of oxygen to coordinate a Lewis acid. For a review on "chelation control" in addition to chiral aldehydes or ketones, see: Reetz, M. T. Angew. Chem., Int. Ed. Engl. 1984, 23, 556.

^{(7) (}a) Kozikowski, A. P.; Wu, J. P. Tetrahedron Lett. 1987, 28, 5125. (b) Benneche, T.; Strande, P.; Undheim, K. Synthesis 1983, 762.

⁽⁸⁾ The low tendency of silyl ethers to coordinate metal ions, both for electronic and steric reasons, is well-known. See: Chen, X.; Hortelano, E. R.; Eliel, E. L.; Frye, S. V. J. Am. Chem. Soc. 1990, 112, 6130 and references therein. Shambayati, S.; Blake, J. F.; Wiersche, S. G.; Jorgensen, W. L.; Schreiber, S. L. J. Am. Chem. Soc. 1990, 112, 697, and references therein.

⁽⁹⁾ Guanti, G.; Banfi, L.; Narisano, E. Tetrahedron Lett. 1991, 32, 6939-6942.

⁽¹⁰⁾ Details on the results of additions of allyltributyltin as well as other allylmetal compounds to aldehydes 7a-e have been already reported in ref 9. The characterizing data of compounds 8a-c and 8e can be found in the supplementary material.

⁽¹¹⁾ Roush, W. R. Allyl Organometallics. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Heathcock, C. H., Eds.; Pergamon Press: Oxford, 1991; Vol. 2, pp 1-53. (12) Evans, D. A.; Rieger, D. L.; Gage, J. R. Tetrahedron Lett. 1990, 31, 7099. Rychnovsky, S. D.; Skalitzky, D. J. Tetrahedron Lett. 1990, 31,

^{945.}

⁽¹³⁾ In 12a, 13, 14a, 14b, and 12a, C-2 resonates at 98.76, 98.74, 98.76, 98.13, and 98.37 ppm, while the methyl groups resonate at 19.14 and 29.81, 19.13 and 29.80, 19.09 and 29.68, 19.41 and 29.32, 19.83 and 29.02 ppm. Twist conformations are expected to display resonances of 100.6 4 0.25 ppm for C-2 and 24.6 ± 0.76 for both methyl groups (ref 12). (14) Guanti, G.; Banfi, L.; Merlo, V.; Narisano, E.; Zannetti, M. T. To

be published.

this adduct¹⁵ which showed an ee > 95%. Oxidative deblocking of the ((p-methoxybenzyl)oxy)methyl group with buffered DDQ⁷ furnished diol (2S,3S)-11 in good yield. Ozonolysis of the double bond gave a 3,5-dihydroxy aldehyde which was directly transformed, under acidic conditions, into the two epimeric cyclic acetals 15a and 15b in a 55:45 ratio. Assignment of the relative configuration was based on the vicinal coupling constants at ¹H NMR of 15a,b and 3a,b. The low stereoselection in acetal formation has no practical consequence on the synthesis, since the anomeric asymmetric center is lost in a later step.

These two anomers were easily separated and independently converted into the corresponding dibenzyl derivatives **3a** and **3b**, which are known intermediates for the synthesis of Talaromycin A.^{3c} Mori^{3c} reported an $[\alpha]_D$ = -16.3° for a 37:63 mixture of **3a** (optically pure) and **3b** (43% ee). We measured -62.4° for **3a** and +11.8° for **3b** and estimated an ee of 97% by Mosher's ester analysis of **8d**.¹⁵ From these values we calculated a theoretical $[\alpha]_D$ = -20.5° for Mori's mixture, which is in fair agreement with the reported value. It is worth noting that the completion of the synthesis of Talaromycin A by using Mori's methodology^{3c} can probably be achieved without need to convert **15a**,**b** into **3a**,**b** by simply protecting the secondary hydroxyl with any suitable group. However we have not explored these possible alternatives.

The synthesis here reported appears to be superior to the previous one, since it requires a comparable number of steps, but proceeds in better overall yield (13% from monoacetate **6**, 10 steps) and, most of all, furnishes products with higher ee (Mori obtained **3a**,**b** in 64\% overall ee).

It should be stressed that, thanks to the fact that in 8d the two protected hydroxymethyl groups are synthetically equivalent, it is in principle possible, following a similar strategy, but reversing the order of protecting group

removal,^{4c} to obtain also the C-5 epimers of **3a**,**b**, which are potential intermediates for the synthesis of Talaromycin B. This fact descends from a peculiar property of BHYMA* and THYM* (*diastereodivergency*),^{4c} which is further demonstrated by the synthesis of both 12a and 12b as well as 14a and 14b starting from a common precursor (8d) (Scheme II). Since starting BHYMA* aldehydes 7a-e can also be prepared in both enantiomeric forms with the same number of steps from monoacetate 6,^{4e} all four stereoisomers of 12 or 14, as well as of the anomeric mixture **3a**,**b**, can be stereoselectivity produced. Thus we can conclude that 6, like other THYM* equivalents, is a *doubly stereodivergent chiral building block*.^{4c}

Synthesis of the Top Half Fragment 4. Scheme IV shows the synthesis of the top fragment 4. In this case we needed to homologate two of the three synthetically equivalent side arms. There are in principle at least 12 different ways to transform 6 into (S)- or (R)-4, 6 of which will lead to the desired R enantiomer.¹⁶ Among these possibilities we chose the one which appeared to require the lower number of steps. For this purpose we converted monoacetate 6 into tosylate 16. Attempts to carry out a cross-coupling condensation with dimethyllithium cuprate at this stage failed, due to side reactions involving the acetyl group. Thus we transformed 16, in excellent yield, into the tetrahydropyranyl ether 17,17 whose condensation with Me₂CuLi¹⁸ proceeded smoothly to give the homologated alkene 18. Ozonolysis-reduction afforded 19, which was ready for the second homologation.

This was realized, after activation of the OH group by conversion into a mesylate, via substitution with sodium cyanide. Our attempts to carry out a cross-coupling

⁽¹⁵⁾ Sullivan, G. R.; Dale, J. A.; Mosher, H. S. J. Org. Chem. 1973, 38, 2143. All Mosher's ester analyses were carried out synthesizing the two diastereomeric compounds using (R)- and (S)-MTPA-Cl ((methoxy-phenyl)(trifluoromethyl)acetyl chlorides).

^{(16) 6} has three synthetically equivalent side arms, in any of which the OH can be substituted by the methyl group. Then each of the remaining 2 OH groups can be substituted by a formylanion equivalent, giving a total of six possibilities. Reversing the order of introduction of formyl and methyl group, six more chances can be devised.

^{(17) 17} was obtained as a 1:1 mixture of epimers at the THP asymmetric center.

⁽¹⁸⁾ Johnson, C. R.; Dutra, G. A. J. Am. Chem. Soc. 1973, 95, 7777–7782, 7783-7788. Kotsuki, H.; Kadota, I.; Ochi, M. Tetrahedron Lett.
1989, 30, 3999-4000. Johnson, C. R.; Senanayake, C. H. J. Org. Chem.
1989, 54, 735-736. Mori, K.; Ebata, T.; Takechi, S. Tetrahedron 1984, 40, 1761-1766. Hanessian, S.; Thavonekham, B.; DeHoff, B. J. Org. Chem.
1989, 54, 5831-5833.

between the tosylate derived from 19 (TsCl, CH₂Cl₂, Et₃N, rt 75%) and lithium divinyl cuprate gave only poor yields (20-25%) of the desired vinyl derivative. The main byproduct turned out to be alcohol 19, probably arising from attack of the cuprate on the sulfur atom rather than on carbon. This result is in contrast with the known tendency of lithium *dialkyl* cuprates to attack cleanly at carbon in reaction with alkanesulfonates.¹⁸ A similar behavior was detected by complexing the cuprate with Me₂S, while using the higher order cuprate (CH₂=CH)-(thienyl)CuCNLi₂¹⁹ or (CH₂=CH)MgBr in the presence of catalytic CuI no reaction took place.

Finally, DIBALH reduction of nitrile 20 furnished aldehyde 4, whose $[\alpha]_D$ (+24.1°), by comparison with the value previously reported by Mori (+25.2°),^{3c} indicated an optical purity of 96%. In order to gain further evidence that the overall procedure was nonracemizing, we also prepared alcohol 21 and determined its ee by Mosher's ester analysis, measuring a value of 95%. The overall yield of 4 from 6 (8 steps) was an excellent 49%.

In conclusion we have further demonstrated that "asymmetrized tris(hydroxymethyl)methane" equivalents represent highly versatile chiral building blocks, thanks to the many possible elaborations of the three synthetically equivalent protected hydroxymethyl groups. In this context we employed a stereoselective organometallic addition to its oxidized form (BHYMA* aldehyde 7) and two homologations via substitution of the OH group with carbon nucleophiles, in order to realize an efficient and convergent synthesis of (-)-Talaromycin A. Studies aimed to further applications of 5 (THYM*) to the synthesis of other biologically active substances are in progress in our laboratories.

Experimental Section

In NMR spectra, an asterisk (*) means that the value was obtained through double resonance experiments. All NMR were measured in CDCl₃ at 200 MHz (H) or 50 MHz (C) in ppm (δ scale). Attribution of ¹³C signals was made also with the aid of DEPT and HETCOR experiments. All reactions employing dry solvents were carried out under a nitrogen atmosphere.

TLC analyses were carried out on silica gel plates, which were developed by spraying a solution of $(NH_4)_4MOO_4\cdot 4H_2O$ (21 g) and Ce(SO₄)₂·4H₂O (1 g) in H₂SO₄ (31 cm³) and H₂O (469 cm³) and warming. R_f were measured after an elution of 7–9 cm. Chromatographies were carried out on 70–230-mesh silica gel using the "flash" methodology.²⁰ Petroleum ether (40–60 °C) is abbreviated as PE. In extractive workup aqueous solutions were always reextracted thrice with the appropriate organic solvent. Organic extracts were dried over Na₂SO₄ and filtered before evaporation of the solvent under reduced pressure. Preparation of aldehydes 7 and of monoacetate 6 is described in ref 4e.

(2S,3S)-1-((*tert*-Butyldiphenylsilyl)oxy)-2-((((*p*-methoxybenzyl)oxy)methoxy)methyl)hex-5-en-3-ol (8d). A solution of crude aldehyde (S)-7d [538 mg, just obtained from ozonolysis of 1.09 mmol of the corresponding alkene (see ref 4e)] in dry CH₂Cl₂ (4 mL) was treated with powdered 4-Å molecular sieves (100 mg) and stirred at rt for 15 min. The resulting suspension was then added via syringe (washing the flask twice with 2 mL of CH₂Cl₂) to a suspension of MgBr₂·Et₂O (564 mg, 2.18 mmol) in dry CH₂Cl₂ (6 mL), precooled to -78 °C. After 5 min, a 1 M solution of allyltributyltin in CH₂Cl₂ (2.18 mmol, 2.18 mL) was added. After the mixture was stirred for 3 h at -78 °C, the temperature was allowed to rise slowly (during 1 h) to -40 °C, and the mixture was stirred overnight. After further stirring for 3 h at -20 °C, the reaction was quenched with 0.5 N pH 7 KH₂-

PO₄/K₂HPO₄ buffer (10 mL), stirred at rt for 15 min, and extracted with Et₂O, to give, after chromatography (PE/Et₂O (7:3)), pure (2S,3S)-8d as an oil (426 mg, 73%). Anal. Found: C, 71.70; H, 8.05. $C_{32}H_{42}O_5Si$ requires C, 71.87; H, 7.92. $[\alpha]_D =$ -4.75° (c 2.21, CHCl₃). $R_f = 0.21$ (PE/Et₂O (7:3); R_f of (2S,3R) epimer = 0.27). ¹H NMR: δ 1.06 (9 H, s, (CH₃)₃CSi), 1.89 (1 H, sextuplet, $CHCH_2O$, J = 5.1 Hz), 2.31 (2 H, bt, $C=CHCH_2$, J =6.8 Hz), 3.06 (1 H, d, OH, J = 4.6 Hz), 3.80 (3 H, s, OCH₃), 3.77-4.00 (5 H, m, CHCH₂O and CHOH), 4.48 (2 H, s, OCH₂Ar), 4.67 (2 H, s, OCH₂O), 5.00-5.16 (2 H, m, CH₂=CHCH₂), 5.84 (1 H, ddt, CH_2 =CH, J = 7.0 (t), 9.6 (d), 17.6 (d) Hz), 6.86 (2 H, d, H ortho to OCH_3 , J = 8.7 Hz), 7.23 (2 H, d, H meta to OCH_3 , J = 8.7 Hz), 7.30-7.70 (10 H, m, other aromatics). The diastereomeric ratio was determined by ¹H NMR of crude product, by integration of the OH signals (which falls at higher fields in the major diastereoisomer). This measurement was further corroborated by ¹H NMR in the presence of Yb(FOD)₃, by integrating the signals of CH_3OAr protons.

(25,3R)-2-(((Benzyloxy)methoxy)methy)hex-5-ene-1,3diol (9). A solution of (2R,3R)-8b (110 mg, 0.218 mmol) in dry THF (5 mL) was treated with a 1 M solution of *n*-Bu₄NF·3H₂O in THF (0.654 mL) and stirred at rt for 3 h. The solution was diluted with saturated aqueous NaCl and extracted with Et₂O to give, after chromatography (PE/Et₂O (1:9)), diol 9 as an oil (46.1 mg, 79%). By the same procedure 9 was also prepared from 8a in 77% yield. $R_f = 0.29$ (PE/Et₂O (1:9)). ¹H NMR: δ 1.89 (1 H, sextuplet, CHCH₂O, J = 5.2 Hz), 2.2O-2.42 (3 H, m, CHCH₂OH and C=CCH₂), 2.48 (1 H, d, CHOH, J = 4.7 Hz), 3.75-4.00 (5 H, m, CHOH, CH₂O, and CH₂OH), 4.62 (2 H, s, OCH₂Ph), 4.78 (2 H, s, OCH₂O), 5.10-5.20 (2 H, m, CH₂=CCH₂, ν_a and ν_b 5.14* and 5.15*), 5.84 (1 H, ddt, CH₂=CH, J = 7.0 (t), 9.7 (d), and 17.6 (d) Hz), 7.35 (5 H, s, aromatics).

(2S,3R)-2-((((4-Methoxybenzyl)oxy)methoxy)methyl)hex-5-ene-1,3-diol (10). It was prepared in 94%, 92%, 83% yield from 8c-e by the same procedure employed for 9. $R_f = 0.25$ (PE/Et₂O (1:9)).

(2S,3S)-2-(((tert-Butyldiphenylsilyl)oxy)methyl)hex-5ene-1,3-diol (11). A solution of (2S,3S)-8d (514 mg, 0.962 mmol) in CH₂Cl₂ (14 mL) was treated with a 0.2 M pH 7 buffer solution $(KH_2PO_4-K_2HPO_4)$ (1.4 mL), with t-BuOH (1.4 mL) and with DDQ (436 mg, 1.924 mmol). The mixture was stirred for 3 h at rt, quenched with saturated aqueous NaHCO₃, filtered through a Celite cake, and extracted with Et₂O to give, after chromatography, pure (2S,3S)-11 (296 mg, 80%), $\tilde{R}_f = 0.22$ (PE/Et₂O (1:1)). ¹H NMR: δ 1.06 (9 H, s, (CH₃)₃C), 1.74 (1 H, sextuplet, $CHCH_2OH, J = 5.2 Hz$, 2.10–2.40 (2 H, m, $CH_2CH=CH_2$), 2.50– 2.75 (2 H, m, OH), 3.82 and 3.85 (2 H, AB part of an ABX syst, CH_2OSi , $J_{AB} = 10.4$, J_{AX} and $J_{BX} = 4.8$ and 5.8 Hz), 3.89-4.02 (3) H, broad m, CHOH and CH2OH), 5.02-5.18 (2 H, m, CH2=CH), 5.66-5.92 (1 H, m, CH2=CH mc 5.79 ppm), 7.30-7.50 (6 H, m, aromatics), 7.60-7.80 (4 H, m, aromatics). This reaction was also carried out on 2R, 3R compound. These products were not further characterized, but directly converted respectively into 15a,b or into (4R,5R)-14b (vide infra).

(4R,5R)-cis-4-Allyl-5-(((benzyloxy)methoxy)methyl)-2,2dimethyl-1,3-dioxane (12a). A solution of (2S,3R)-9 (53 mg, 0.199 mmol) in dry CH₂Cl₂ (5 mL), cooled to 0 °C, was treated with 2-methoxypropene (0.057 mL, 0.60 mmol) and with p-toluenesulfonic acid hydrate (0.040 mL of a 0.1 M solution in THF). The solution was warmed to rt and stirred for 10 min. After addition of Et₃N (0.5 mL) and evaporation, the residue was directly chromatographed via preparative TLC ($PE/Et_2O(8:2)$) to give 12a as an oil (48 mg, 79%). Anal. Found: C, 70.75; H, 8.70. $C_{18}H_{26}O_4$ requires C, 70.56; H, 8.55. $[\alpha]_D = -7.8^{\circ}$ (c 1.74, CHCl₃). $R_f = 0.42$ (PE/Et₂O (8:2)). ¹H NMR: δ 1.39 and 1.46 $(2 \times 3 H, H_3 CCCH_3), 1.65 (1 H, ddq (apparent decuplet), CHCH_2$ -OBOM, $J \approx 2.4$ (q), 4.8 (d), and 9.6 (d) Hz), 2.06–2.39 (2 H, m, $CH_2CH=CH_2$), 3.78 and 3.92 (2 H, AB part of an ABX syst, CH_2OBOM , $J_{ab} = 9.5$, J_{ax} and $J_{bx} = 9.6$ and 4.9 Hz), 3.98 and 4.03 (2 H, AB part of an ABX syst, $CH_2OC(Me)_2$, $J_{ab} = 11.8$, J_{ax} and $J_{\text{bx}} = 1.7$ and 2.8 Hz), 4.07 (1 H, dt, CHO, $J_{4-5} = 2.6$, $J_{4-4'} = 7.2$ Hz), 4.59 and 4.62 (2 H, AB syst, CH_2Ph , J = 11.7 Hz), 4.79 (2 H, s, OCH₂O), 5.02–5.20 (2 H, m, CH₂=CHCH₂, ν_a and $\nu_b = 5.07*$ and 5.18^* , $J_{ab} = 2.0^*$, J_{ax} and $J_{bx} = 10.0^*$ and 17.3^* Hz), 5.79 (1 H, dddd, CH₂=-CH, J = 6.2, 7.5, 10.0, 17.3 Hz), 7.25-7.40 (5 H, m, aromatics). ¹³C NMR: δ19.14 and 29.81 (CH₃), 37.05 (CHCH₂-

⁽¹⁹⁾ Lipshutz, B. H. Synlett. 1990, 1, 119-128.

⁽²⁰⁾ Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.

OBOM), 37.25 (CH₂CH=CH₂), 61.87 (C-6 or C-5'), 63.37 (C-5' or C-6), 69.40 (OCH₂Ph), 70.57 (C-4), 94.84 (OCH₂O), 98.76 (C-2), 117.02 (CH₂=C), 127.53, 127.84, and 128.25 (aromatic CH), 134.07 (CH₂=CH), 137.79 (aromatic C).

(4R,5R)-cis-4-Allyl-5-((((4-methoxybenzyl)oxy)methoxy)methyl)-2,2-dimethyl-1,3-dioxane (13). It was prepared from (2S,3R)-10 in 88% yield, using the same procedure employed for 12a. Anal. Found: C, 67.80; H, 8.45. C₁₉H₂₈O₅ requires C 67.83; H, 8.39. $[\alpha]_D = -8.5^{\circ} (c \ 2.5, CHCl_3)$. $R_f = 0.22 (PE/Et_2O(8:2))$. ¹H NMR: δ 1.39 and 1.46 (2 × 3 H, H₃CCCH₃), 1.66 (1 H, ddq (apparent decuplet), CHCH₂OPMBOM, $J \approx 2.4$ (q), 4.8 (d), and 9.6 (d) Hz), 2.05–2.35 (2 H, m, CH₂CH=CH₂), 3.80 (3 H, s, CH₃O), 3.76 and 3.91 (2 H, AB part of an ABX syst, CH₂OPMBOM, J_{ab} = 9.5, J_{ax} and $J_{bx} = 9.6$ and 4.7 Hz), 3.98 and 4.03 (2 H, AB part of an ABX syst, $CH_2OC(Me)_2$, $J_{ab} = 11.4$, J_{ax} and $J_{bx} = 1.6$ and 2.7 Hz), 4.07 (1 H, dt, CHO, $J_{4-5} = 2.4$ Hz^{*}), 4.51 and 4.55 (2 H, AB syst, CH_2Ar , J = 11.3 Hz), 4.76 (2 H, s, OCH_2O), 4.96-5.20 (2 H, m, CH_2 =CHCH₂, v_a and $v_b = 5.08^*$ and 5.13^* , $J_{ab} = 2.0^*$. J_{ax} and $J_{bx} = 10.0^*$ and 17.3* Hz), 5.80 (1 H, dddd, CH₂=-CH, J = 6.2, 7.4, 10.0, and 17.3 Hz), 6.88 (2 H, d, H ortho to OMe, J = 8.7 Hz), 7.29 (2 H, d, H meta to OMe, J = 8.7 Hz). ¹³C NMR: δ 19.13 and 29.80 (CH₃), 37.05 (CHCH₂OPMBOM), 37.24 (CH₂-CH=CH₂), 55.31 (OCH₃), 61.85 (C-5'), 63.28 (C-6), 69.00 (OCH₂-Ar), 70.57 (C-4), 94.54 (OCH₂O), 98.74 (C-2), 116.99 (CH₂=C), 113.72 and 129.46 (aromatic CH), 129.88 (aromatic C), 134.08 $(CH_2 = CH)$, 159.06 (aromatic C).

(4R,5S)-cis-4-Allyl-5-(((tert-butyldiphenylsilyl)oxy)methyl)-2,2-dimethyl-1,3-dioxane (14a). A solution of 13 (50.6 mg, 0.150 mmol) in CH₂Cl₂ (2 mL) was treated with a 0.2 M pH 7 buffer solution (KH_2PO_4 - K_2HPO_4) (0.2 mL), with t-BuOH (0.02 mL), and with DDQ (68.3 mg, 0.301 mmol). The mixture was stirred for 4 h at rt, quenched with saturated aqueous NaHCO₃, filtered through a Celite cake, and extracted with Et₂O to give, after chromatography, pure (4R,5R)-4-allyl-5-(hydroxymethyl)-2,2-dimethyl-1,3-dioxane as an oil (17.4 mg, 62%). $R_f = 0.22$ $(PE/Et_2O(2:8))$. It was taken up in dry DMF (1 mL) and treated at 0 °C with imidazole (14.4 mg, 0.211 mmol), and Ph₂t-BuSiCl (0.027 mL, 0.106 mmol). After stirring for 3 h at rt, the mixture was treated with H_2O and extracted with Et_2O/PE to give, after preparative TLC (PE/Et₂O (95:5)), pure 14a as an oil (32.5 mg, 82%). Anal. Found: C, 73.35; H, 8.60. C₂₆H₃₆O₃Si requires C, 73.54; H, 8.54. $R_f = 0.50 (PE/Et_2O (9:1))$. ¹H NMR: δ 1.04 (9 H, s, (CH₃)₃C), 1.35 and 1.45 (2 × 3 H, 2 s, (CH₃)₂C), 1.50-1.68 (1 H, m, CHCH₂O, mc 1.58), 1.87–2.23 (2 H, m, CH₂CH=CH₂), 3.79 and 4.04 (2 H, AB part of an ABX syst, CH_2OSi , $J_{ab} = 10.0$ Hz, $J_{5-5'} = 5.1$ and 10.0 Hz), 3.96 and 4.24 (2 H, AB part of an ABX syst, $CH_2OC(Me)_2$, $J_{ab} = 11.6$ Hz, $J_{5-6} = 1.6$ and 2.6 Hz), 4.02 (1 H, dt, CHO, J = 2.6 (d) and 7.2 (t) Hz), 4.88–5.04 (2 H, m, C=CH₂), 5.50-5.74 (1 H, m, CH=CH₂), 7.30-7.50 (6 H, m, aromatics), 7.60-7.80 (4 H, m, aromatics). ¹³C NMR: δ 19.27 (C(CH₃)₃), 19.09 and 29.68 ((CH₃)₂C), 26.94 ((CH₃)₃C), 37.01 (CH₂-CH=CH₂), 39.19 (C-5), 59.08 and 61.32 (C-6 and C-5'), 70.68 (C-4), 98.76 (C-2), 116.88 (CH2=CH), 127.66 (aromatic CH ortho to Si), 129.59 (aromatic CH para to Si), 133.77 and 134.06 (aromatic C), 134.32 (CH=CH₂), 135.64 and 135.72 (aromatic CH meta to Si).

(4R,5R)-trans-4-Allyl-5-(((tert-butyldiphenylsilyl)oxy)methyl)-2,2-dimethyl-1,3-dioxane (14b). It was prepared from (2R,3R)-11 by the same procedure utilized for the synthesis of 12a. Anal. Found: C, 73.45; H, 8.55. C₂₆H₃₆O₃Si requires C. 73.54; H, 8.54. $[\alpha]_D = +7.0^\circ$ (c = 2.6, CHCl₃). $R_f = 0.37$ (PE/ Et₂O (9:1)). ¹H NMR: δ 1.06 (9 H, s, (CH₃)₃C), 1.40 and 1.45 (2 \times 3 H, 2 s, (CH₃)₂C), 1.83 (1 H, tq (apparent octuplet), CHCH₂O, $J \approx 5.0$ (q) and ≈ 10.0 Hz (t)), 2.00–2.40 (2 H, m, CH₂CH=CH₂, v_{a} and $v_{b} = 2.11^{*}$ and 2.30^{*} , $J_{ab} = 14.8^{*}$, $J_{4-4'} = 3.3^{*}$ and 7.3^{*} Hz), 3.57 (2 H, d, CH_2OSi , J = 4.9 Hz), 3.89 and 3.93 (2 H, AB part of an ABX syst, $CH_2OC(Me)_2$, $J_{ab} = 11.8$ Hz, $J_{5-6} = 5.0$ and 10.5 Hz), 3.75–3.95 (1 H, m, CHO), 4.91–5.07 (2 H, m, CH=C H_2 , ν_a and $v_b = 4.97^*$ and 5.01^* , $J_{ab} = 2.1^*$, J_{ax} and $J_{bx} = 10.5^*$ and 17.0^* Hz), 5.86 (1 H, ddt, CH_2 =CH, J = 6.9 (t), 10.7 (d), and 16.8 (d) Hz), 7.35-7.50 (6 H, m, aromatics), 7.60-7.70 (4 H, m, aromatics). ¹³C NMR: δ 19.79 (C(CH₃)₃), 19.41 and 29.32 ((CH₃)₂C), 26.96 ((CH₃)₃C), 37.92 (CH₂CH=CH₂), 41.16 (C-5), 62.09 (C-6 and C-5') 69.87 (C-4), 98.13 (C-2), 116.39 (CH2=CH), 127.62 (aromatic CH

ortho to Si), 129.66 (aromatic CH para to Si), 133.07 and 133.14 (aromatic C), 134.57 ($CH=CH_2$), 135.43 (aromatic CH meta to Si).

(4R,5S)-trans-4-Allyl-5-(((benzyloxy)methoxy)methyl)-2,2-dimethyl-1,3-dioxane (12b). A solution of (4R,5R)-14b (54 mg, 0.127 mmol) in dry THF (3 mL) was treated with a 1 M solution of n-Bu₄NF·3H₂O in THF (0.381 mL, 0.381 mmol) and stirred at rt for 3 h. After dilution with H₂O/saturated aqueous NaCl, 1:1, the mixture was extracted with Et_2O to give, after chromatography (PE/Et₂O (1:9)) (4R,5S)-4-allyl-5-(hydroxymethyl)-2,2-dimethyl-1,3-dioxane as an oil (18.5 mg, 78%). R_f = 0.49 (PE/Et₂O (1:9)). This compound was taken up in dry CH₂Cl₂, cooled to 0 °C, and treated with EtN(*i*-Pr)₂ (0.027 mL, 0.155 mmol) and with BOM-Cl (0.019 mL, 0.137 mmol). The solution was warmed to rt and stirred for 24 h. It was treated with $Et_2NH(0.007 \text{ mL})$, stirred for 20 min, diluted with saturated aqueous NaCl, extracted with Et₂O to give, after preparative TLC, 12b as an oil (25 mg, 81%). Anal. Found: C, 70.45; H, 8.60. $C_{18}H_{26}O_4$ requires C, 70.56; H, 8.55. $R_f = 0.42$ (PE/Et₂O (8:2)). ¹H NMR: δ 1.39 and 1.43 (2 × 3 H, H₃CCCH₃), 1.91 (1 H, tq (apparent octuplet), CHCH₂OBOM, $J \approx 5.0$ (q) and ≈ 10.0 (t) Hz), 2.12-2.49 (2 H, m, CH₂CH=CH₂), 3.48 (2 H, d, CH₂-OBOM, J = 5.8 Hz), 3.77 and 3.84 (2 H, AB part of an ABX syst, $CH_2OC(Me)_2, J_{ab} = 11.4, J_{ax} \text{ and } J_{bx} = 5.0 \text{ and } 10.2 \text{ Hz}), 3.69-3.92$ (1 H, m, CHO), 4.58 (2 H, s, CH₂Ph), 4.70 (2 H, s, OCH₂O), 4.91-5.17 (2 H, m, CH=CHCH₂), 5.89 (1 H, ddt, CH₂=CH, J = 7.0 (t), 10.7 (d), and 16.8 (d) Hz), 7.34 (5 H, s, aromatics). $^{13}\mathrm{C}$ NMR: δ 19.83 and 29.02 (CH₃), 38.02 (CH₂CH=CH₂), 39.42 (CHCH₂OBOM), 62.06 (C-6), 66.31 (C-5'), 69.67 (OCH₂Ph), 70.21 (C-4), 94.94 (OCH₂O), 98.37 (C-2), 116.58 (CH₂=C), 127.77, 127.83, and 128.47 (aromatic CH), 134.72 (CH2=CH), 137.86 (aromatic C).

(2R,4S,5S)- and (2S,4S,5S)-5-(((tert-Butyldiphenylsilyl)oxy)methyl)-2-ethoxy-4-hydroxytetrahydropyrans (15a and 15b). A solution of (2S,3S)-11 (296 mg, 0.770 mmol) in dry CH₂-Cl₂ (4 mL) and dry MeOH (7 mL) was ozonolyzed at -78 °C until the blue-gray coloration persisted. After addition of dimethyl sulfide (0.4 mL), the solution was stirred at rt for 2 h, evaporated to dryness, and stripped for 2 h at 10^{-2} mbar. The oily residue was taken up in dry EtOH (10 mL), treated with powdered 4-Å molecular sieves (100 mg) and with a 1 M solution of p-toluenesulfonic acid hydrate in absolute EtOH (0.4 mL), and stirred at rt for 3 h. The reaction was quenched with solid NaHCO₃ (100 mg) and filtered. After evaporation of the solvent, chromatography (PE/Et₂O (8:2 \rightarrow 7:3)) gave pure 15a (118 mg, 37%) and 15b (96 mg, 30%).

15a. Anal. Found: C, 69.50; H, 8.30. C₂₄H₃₄O₄Si requires: C, 69.53; H, 8.27. $[\alpha]_D = -37.6^\circ$ (c 2.88, CHCl₃). $R_f = 0.42$ (PE/ Et₂O (1:1)). ¹H NMR: δ 1.06 (9 H, s, SiC(CH₃)₃), 1.22 (3 H, t, CH_3CH_2O , J = 7.1 Hz), 1.73 (1 H, ddd, HOCHCHCHOEt, J =3.4, 6.8, and 13.3 Hz), 1.95 (1 H, ddd, HOCHCHCHOEt, J = 2.8, 6.3, and 13.4 Hz), 1.91-2.06 (1 H, m, SiOCH₂CHCHOH), 3.50 (1 H, dq, OCHHCH₃, J = 7.1 (q) and 10.1 (d) Hz), 3.81 (1 H, dq, $OCHHCH_3$, J = 7.1 (q) and 10.1 (d) Hz), 3.80 and 3.74 (2 H, AB part of an ABX syst, CHCH₂OC, $J_{ab} = 10.0$, J_{ax} and $J_{bx} = 6.6$ and 2.6 Hz), 3.86 (2 H, d, CH₂OSi, J = 5.14 Hz), 4.37 (1 H, dt, CHOH, J = 3.3 (t) and 6.3 (d) Hz), 4.85 (1 H, dd, CHOEt, J = 2.8 and 6.8 Hz), 7.35-7.50 (6 H, m, aromatics), 7.60-7.70 (4 H, m, aromatics). ¹³C NMR: δ 15.38 (CH₃CH₂O), 19.21 (Me₃C), 26.92 ((CH₃)₃C), 37.85 (CH₂CHOH), 41.37 (CHCH₂OSi), 61.84 (OCH₂-CH₃), 63.78 and 63.88 (CH₂OSi and CH₂OCH(OEt)), 67.44 (CHOH), 97.86 (OCH(OEt)), 127.73 (ArCH ortho to Si), 129.86 (ArCH para to Si), 132.39 (ArC), 135.38 (ArCH meta to Si).

15b. Anal. Found: C, 69.40; H, 8.35. $C_{24}H_{34}O_4Si$ requires: C, 69.53; H, 8.27. $[\alpha]_D = +56.15^\circ$ (c 2.88, CHCl₃). $R_f = 0.64$ (PE/Et₂O (1:1)). ¹H NMR: δ 1.05 (9 H, s, SiC(CH₃)₃), 1.22 (3 H, t, CH₃CH₂O, J = 7.1 Hz), 1.84 (1 H, dt, HOCHCHCHOEt, J =3.4 (t) and 14.2 (d) Hz), 1.98 (1 H, ddd, HOCHCHCHOEt, J =1.7, 3.4 and 14.4 Hz), 2.05 (1 H, ddq, SiOCH₂CHCHOH, J = 2.7(d), 7.0 (d), and 8.3 (q) Hz), 3.43 (1 H, dq, OCHHCH₃, J = 7.05(q) and 9.7 (d) Hz), 3.78 (1 H, dq, OCHHCH₃, J = 7.0 (q) and 9.0 (d) Hz), 3.77 and 3.61 (2 H, AB part of an ABX syst, CHCH₂-OC, $J_{ab} = 10.2$, J_{ax} and $J_{bx} = 6.3$ and 7.9 Hz), 3.69 (2 H, d, CH₂OSi, J = 8.1 Hz), 3.90-4.00 (1 H, m, CHOH), 4.87-4.94 (1 H, m, CHOEt), 7.35-7.50 (6 H, m, aromatics), 7.60-7.70 (4 H, m, aromatics). ¹³C NMR: δ 15.29 (CH₃CH₂O), 19.38 ((Me)₃C), 26.98 $((CH_{3})_{3}C), 36.06 (CH_{2}CHOH), 42.85 (CHCH_{2}OSi), 57.51 (OCH_{2}-CH_{3}), 63.26 (CH_{2}OSi and CH_{2}OCH(OEt)), 64.70 (CHOH), 97.43 (OCH(OEt)), 127.51 (ArCH ortho to Si), 129.47 (ArCH para to Si), 133.46 (ArC), 135.41 (ArCH meta to Si).$

(2R,4S,5R)-4-(Benzyloxy)-5-((benzyloxy)methyl)-2-ethoxytetrahydropyran (3a). A solution of 15a (98 mg, 0.236 mmol) in dry THF (5 mL) was treated with a 1 M solution of n-Bu₄- $NF \cdot 3H_2O$ in THF (0.709 mL) and stirred at rt for 3 h. The mixture was diluted with saturated aqueous NaCl/H2O, 1:1, and extracted with Et₂O to give, after chromatography (PE/AcOEt/MeOH (19: 76:5)) pure 2-ethoxy-5-(hydroxymethyl)tetrahydropyran-4-ol (35.4 mg) ($R_{f} = 0.35$, PE/AcOEt/MeOH (19:76:5)) as an oil. It was taken up in dry DMF (1 mL), cooled to 0 °C, and treated sequentially with benzyl bromide (0.071 mL, 0.60 mmol) and NaH (50% suspension in mineral oil, 29 mg, 0.6 mmol). The mixture was stirred overnight at rt, quenched with saturated aqueous NH_4Cl/H_2O , 1:1, and extracted with Et_2O to give, after chromatography (PE/Et_2O (7:3)), pure 3a as an oil (43 mg, 51%from 15a). Anal. Found: C, 74.00; H, 8.00. C₂₂H₂₈O₄ requires C, 74.14; H, 7.92. $[\alpha]_{\rm D} = -62.4^{\circ}$ (c 0.95, CHCl₃). $R_f = 0.50$ (PE/ Et₂O (7:3)). ¹H NMR: δ 1.22 (3 H, t, CH₃CH₂O, J = 7.1 Hz), 1.73 (1 H, dt, BzlOCHCHCHOEt, J = 4.7 (t) and 13.3 (d) Hz), 1.92 (1 H, ddd, BzlOCHCHCHOEt, J = 3.1, 7.8, and 13.3 Hz), 2.15-2.33 (1 H, m, BzlOCH₂CHCHOBzl), 3.46 (1 H, dq, OCHHCH₃, J = 7.1 (q) and 9.7 (d) Hz), 3.62 and 3.58 (2 H, AB part of an ABX syst, CHCH₂OC or CH₂OBzl, $J_{ab} = 9.1$, J_{ax} and $J_{bx} = 5.4$ and 8.6 Hz), 3.79 and 3.80 (2 H, AB part of an ABX syst, CHCH₂OC or $CH_2OBzl, J_{ab} = 9.1, J_{ax} + J_{bx} = 9.8 Hz), 3.81 (1 H, dq, OCHCH_3,$ J = 7.1 (q) and 9.7 (d) Hz), 4.01 (1 H, dt, CHOBzl, J = 3.9 (t) and 7.7 (d) Hz), 4.50 and 4.55 (2 H, AB syst, OCH_2Ph , J = 11.6Hz), 4.51 (2 H, s, OCH₂Ph), 4.83 (1 H, dd, CHOEt, J = 3.1 and 5.3 Hz), 7.25-7.40 (10 H, m, aromatics). ¹³C NMR: δ 15.19 (CH₃-CH2O), 33.96 (CH2CHOBzl), 39.62 (CHCH2OBzl), 61.14 (CH2-OBzl or $CH_2OCH(OEt)$), 63.43 (CH_2CH_3), 66.61 (CH_2OBz l or CH2OCH(OEt)), 70.45 (CH2Ph), 72.22 (CHOBzl), 73.32 (CH2-Ph), 97.92 (OCH(OEt)), 128.363, 127.629, and 127.524 (aromatic CH), 138.55 and 138.46 (aromatic C).

(2S,4S,5R)-4-(Benzyloxy)-5-((benzyloxy)methyl)-2-ethoxytetrahydropyran (3b). It was prepared from 15b in 48% yield by the same procedure employed for 3a. Found: C, 74.05; H, 8.00. $C_{22}H_{28}O_4$ requires C, 74.14; H, 7.92. $[\alpha]_D = +11.8^{\circ}$ (c 0.55, CHCl₃). $R_f = 0.47$ (PE/Et₂O (7:3)). ¹H NMR: δ 1.23 (3 H, t, $CH_{3}CH_{2}O, J = 7.1 Hz$, 1.72 (1 H, ddd, BzlOCHCHCHOEt, J =7.1, 9.4, and 13.2 Hz), 1.94 (1 H, dt, BzlOCHCHCHOEt, J = 3.6(t) and 13.2 (d) Hz), 2.15-2.30 (1 H, m, BzlOCH₂CHCHOBzl), $3.38 (1 \text{ H}, \text{dd}, \text{CHCH}_2\text{OC} \text{ or } \text{CH}_2\text{OBzl}, J = 7.0 \text{ Hz}), 3.48 (1 \text{ H}, \text{dq}, \text{H})$ $OCHCH_3$, J = 7.1 (q) and 9.7 (d) Hz), 3.68 (2 H, d, CHCH₂OC or CH_2OBzl , J = 7.0 Hz), 3.73 (1 H, dt, CHOBzl, J = 4.6 (t) and 9.4 (d) Hz), 3.89 (1 H, dq, OCHCH₃, J = 7.1 (q) and 9.7 (d) Hz), 4.18 (1 H, dd, CH_2CHOEt , J = 4.5 and 11.8 Hz), 4.47 (1 H, dq, CHOEt, J = 3.0 and 7.1 Hz), 4.56 and 4.49 (2 H, AB syst, OCH₂-Ph, $J_{ab} = 11.3$ Hz), 4.55 and 4.52 (2 H, AB syst, OCH₂Ph, $J_{ab} =$ 12.0 Hz), 7.25–7.40 (10 H, m, aromatics). ¹³C NMR: δ 15.37 (CH₃CH₂O), 34.05 (CH₂CHOBzl), 39.01 (CHCH₂OBzl), 61.82 and 64.17 (CH₂OBzl or CH₂OCH(OEt) and CH₂CH₃), 66.58 (CH₂-OBzl or CH₂OCH(OEt)), 69.82 (CH₂Ph), 73.10 (CHOBzl), 73.37 (CH₂Ph), 99.43 (OCH(OEt)), 127.53, 127.46, 127.40, and 128.22 (aromatic CH), 138.40 and 138.32 (aromatic C).

(R)-(E)-2-(Acetoxymethyl)-5-methyl-1-((p-toluenesulfonyl)oxy)hex-3-ene (16). A solution of 64e (2.017 g, 10.83 mmol) in dry CH₂Cl₂ (20 mL), cooled to 0 °C, was treated with Et₃N (6.0 mL, 43.32 mmol) and p-toluenesulfonyl chloride (4.13 g, 21.66 mmol). The temperature was allowed to rise to rt, and the mixture was stirred at this temperature overnight. Quenching with saturated aqueous NH4Cl and extraction with Et2O gave, after chromatography (PE/Et₂O (7:3)), pure 16 as colorless liquid (3.51) g, 95%). Anal. Found: C, 60.00; H, 7.10. C₁₇H₂₄O₅S requires $C, 59.98; H, 7.11. [\alpha]_D = +10.0^{\circ} (c 2.31, CHCl_3). R_f = 0.30 (PE/$ Et₂O (7:3)). ¹H NMR: δ 0.93 (6 H, d, (CH₃)₂CH, J = 6.7 Hz), 1.96 (3 H, s, $CH_3C=0$), 2.21 (1 H, d of octuplet, $(CH_3)_2CH$, J =1.1 (d) and 6.7 Hz (oct)), 2.45 (3 H, s, CH₃Ar), 2.66 (1 H, d of sextuplet, $CHCH_2O$, J = 0.6 (d) and 6.7 Hz (sext)), 3.96 and 4.04 (2 H, AB part of an ABX syst, CH_2O , $J_{ab} = 11.1$, J_{ax} and $J_{bx} =$ 6.9 and 5.7 Hz), 4.02 (2 H, d, CH₂O, J = 6.2 Hz), 5.12 (1 H, ddd, $CH=CHCH(CH_3)_2$, J = 1.2, 8.0, and 15.7 Hz), 5.52 (1 H, ddd, CH=CHCH(CH₃)₂, J = 0.6, 6.7, and 15.6 Hz), 7.35 (2 H, d, aromatics, J = 8.1 Hz), 7.80 (2 H, d, aromatics, J = 8.1 Hz).

(2R,2'R)- and (2R,2'S)-(E)-5-Methyl-2-(((tetrahydropyran-2-yl)oxy)methyl)-1-((p-toluenesulfonyl)oxy)hex-3enes (17). A solution of 16 (3.51 g, 10.31 mmol) in THF (33 mL) was treated with a solution of LiOH (479 mg, 20.0 mmol) in H_2O (17 mL). The resulting solution was stirred overnight at rt, quenched with saturated aqueous NH4Cl, and extracted with Et_2O to give, after chromatography, pure (R)-(E)-5-methyl-2-(((p-toluenesulfonyl)oxy)methyl)-3-hexen-1-ol (2.948 g, 96%). $[\alpha]_{\rm D} = +18.9^{\circ}$ (c 2.0, CHCl₃). $R_f = 0.23$ (PE/Et₂O (6:4)). ¹H NMR: $\delta 0.94$ (6 H, d, (CH₃)₂CH, J = 6.7 Hz), 2.23 (1 H, d of octuplet, $CH(CH_3)_2$, J = 1.1 (d) and 6.7 Hz (oct)), 2.45 (3 H, s, CH_3Ar), 2.40–2.60 (1 H, m, $CHCH_2O$), 3.60 (2 H, d, CH_2OH , J = 6.3 Hz), 4.04 and 4.08 (2 H, AB part of an ABX syst, J_{ab} = 9.7, J_{ax} and $J_{bx} = 6.8$ and 5.3 Hz), 5.17 (1 H, ddd, CH=CHCH(CH₃)₂, $J = 1.1, 8.1, \text{ and } 15.7 \text{ Hz}), 5.55 (1 \text{ H}, \text{dd}, \text{CH}=CHCH(CH_3)_2, J$ = 6.8 and 15.9 Hz), 7.35 (2 H, d, aromatics, J = 8.1 Hz), 7.80 (2 H, d, aromatics, J = 8.1 Hz). This alcohol was taken up in dry CH₂Cl₂ (25 mL), cooled to 0 °C, and treated with dihydropyran (2.70 mL, 29.64 mmol) and with a 0.1 M solution of p-toluenesulfonic acid hydrate in THF (1 mL). The solution was stirred at rt for 1 h and then quenched with saturated aqueous NaHCO₃ (2.5 mL), diluted with H₂O (50 mL), and extracted with Et₂O to give, after chromatography (PE/Et₂O (8:2)) pure 17 (1:1 diastereomeric mixture, as judged by NMR) as a colorless liquid (3.712 g, 98%). Anal. Found: C, 62.70; H, 7.95. C₂₀H₃₀O₅S requires C, 62.80; H, 7.90. $[\alpha]_D = +0.45^\circ$ (c 1.88, CHCl₃). $R_f =$ 0.28 (PE/Et₂O (8:2)). ¹H NMR: δ 0.92 (6 H, d, (CH₃)₂CH, J = 6.8 Hz), 1.35-1.85 (6 H, m, OCH₂(CH₂)₃), 2.20 (1 H, octuplet, $(CH_3)CH, J = 6.7 Hz), 2.45 (3 H, s, ArCH_3), 2.50-2.65 (1 H, m, m)$ CHCH₂O), 3.27 ($^{1}/_{2}$ H, dd, CHHOTHP of one diast, J = 7.7 and 9.7 Hz), 3.34 ($\frac{1}{2}$ H, dd, CHHOTHP of one diast, J = 4.7 and 9.8 Hz), 3.40–3.54 and 3.65–3.82 (2 × 1 H, 2 m, OCH₂CH₂), 3.64 ($^{1}/_{2}$ H, dd, CHHOTHP of one diast, J = 6.9 and 9.7 Hz), 3.68 ($^{1}/_{2}$ H, dd, CHHOTHP of one diast, J = 5.2 and 9.8 Hz), 4.03 and 4.13 (1 H, AB part of an ABX syst, CH_2OTs of one diast, $J_{ab} = 9.2$, J_{ax} and $J_{bx} = 6.1$ Hz), 4.08 (1 H, d, CH₂OTs of one diast, J = 5.1Hz), 4.43-4.53 (1 H, m, OCHO), 5.18 (1/2 H, ddd, CH=CHCH- $(CH_3)_2$ of one diast, J = 1.1, 7.9, and 15.6 Hz), 5.19 ($\frac{1}{2}$ H, ddd, $CH = CHCH(CH_3)_2$ of one diast, J = 1.1, 7.9, and 15.6 Hz), 5.50 $(1 \text{ H}, \text{ dd}, \text{CH}=CHCH(CH_3)_2, J = 6.6 \text{ and } 15.6 \text{ Hz}), 7.35 (2 \text{ H}, \text{ d}, \text{ d})$ aromatics, J = 8.1 Hz), 7.80 (2 H, d, aromatics, J = 8.1 Hz).

(2R,2'R)- and (2R,2'S)-(E)-2-((2-Ethyl-5-methylhex-3enyl)oxy)tetrahydropyrans (18). A suspension of CuI (4.7 g, 24.7 mmol) in dry Et₂O (40 mL), kept under an He atmosphere and cooled to -10 °C, was treated with a 1.6 M solution of MeLi in Et₂O (30.875 mL, 49.4 mmol). During this addition a yellow precipitate formed first, which, upon completion of the addition, dissolved completely forming a brown solution. After stirring for 10 min at -10 °C, this solution was added through a syringe to a solution of 17 (1.82 g, 4.94 mmol) in Et_2O (20 mL), cooled to -40 °C. The temperature was allowed to rise slowly to rt, and the mixture was stirred overnight. After dilution with saturated aqueous NH₄Cl (50 mL), 10% NH₄OH (50 mL), and Et₂O, the mixture was transferred into a beaker and stirred in the air for 1 h to give two homogeneous phases, which were separated. The organic layer was washed with saturated aqueous NaCl to give, after chromatography (PE/Et₂O (100:0 \rightarrow 97:3)) pure 18 as a colorless liquid (979 mg, 88%). Anal. Found: C, 74.20; H, 11.55. $C_{14}H_{26}O_2$ requires C, 74.29; H, 11.58. $[\alpha]_D = +2.1^{\circ} (c 2.35, CHCl_3).$ $R_{f} = 0.67$ (PE/MeOt-Bu (9:1)). ¹H NMR: $\delta 0.86$ (3 H, t, CH₂CH₃, J = 7.4 Hz), 0.97 (6 H, d, (CH₃)₂CH, J = 6.7 Hz), 1.10–1.35 (2 H, m, CH₂CH₃), 1.40-1.90 (6 H, m, OCH(CH₂)₃CH₂O), 2.05-2.20 $(1 \text{ H}, \text{ m}, \text{CHCH}_2\text{O}), 2.25 (1 \text{ H}, \text{ octuplet}, (\text{CH}_3)_2\text{CH}, J = 6.7 \text{ Hz}),$ $3.26 (1/_2 H, dd, CHHOTHP of one diast, J = 6.0 and 9.6 Hz), 3.29$ $(1/_2$ H, dd, CHHOTHP of one diast, J = 6.0 and 9.6 Hz), 3.42-3.55and 3.80-3.92 (2 H, 2 m, OCH₂CH₂), 3.59 (1/2 H, dd, CHHOTHP of one diast, J = 4.2 and 9.6 Hz), 3.62 ($\frac{1}{2}$ H, dd, CHHOTHP of one diast, J = 3.6 and 9.6 Hz), 4.55-4.62 (1 H, m, OCHO), 5.14 $(1/_2 H, ddd, CH = CHCH(CH_3)_2$ of one diast, J = 1.1, 8.3, and 15.4Hz), 5.15 ($^{1}/_{2}$ H, ddd, CH=CHCH(CH₃)₂ of one diast, J = 1.1, 8.3, and 15.4 Hz), 5.43 (1 H, dd, CH=CHCH(CH₃)₂, J = 6.6 and 15.4 Hz).

(2R,2'R)- and (2R,2'S)-2-((Tetrahydropyran-2-yloxy)methyl)-1-butanols (19). A solution of 18 (951 mg, 4.20 mmol) in dry MeOH (23 mL) and dry CH₂Cl₂ (15 mL) was ozonolyzed at -78 °C until the solution became blue-gray. Then dimethyl sulfide (2 mL) was added. After 5 min solid NaBH₄ (795 mg, 21.00 mmol) was added, and the temperature was allowed to rise tort. Quenching with saturated aqueous NH4Cl (40 mL) followed by evaporation of most MeOH and extraction with Et₂O afforded. after chromatography (PE/Et₂O (4:6 \rightarrow 3:7)), pure 19 as a colorless liquid (723 mg, 91%). Anal. Found: C, 63.65; H, 10.60. C₁₀H₂₀O₃ requires C, 63.80; H, 10.71. $[\alpha]_{\rm D} = +12.2^{\circ}$ (c 2.06, CHCl₃). $R_{\rm f}$ = 0.27 (PE/Et₂O (4:6)). ¹H NMR: δ 0.95 (3 H, t, CH₃CH₂, J = 7.3 Hz), 1.20–1.50 (2 H, m, CH_2CH_3), 1.45–1.90 (7 H, m, $OCH(CH_2)_3CH_2O$ and $CHCH_2OH$), 3.40 ($^{1}_{2}$ H, dd, CHHOTHPof one diast, J = 7.1 and 9.6 Hz), 3.45-3.94 (5 H, m, CH₂OH, OCH₂CH₂, CHHOTHP), 3.95 (1/2 H, dd, CHHOTHP of one diast, J = 4.1 and 9.6 Hz), 4.54-4.63 (1 H, m, OCHO).

(3R,2'R)- and (3R,2'S)-3-((Tetrahydropyran-2-yloxy)methyl)pentanonitriles (20). A solution of 19 (603 mg, 3.20 mmol) in dry CH₂Cl₂ (15 mL), cooled to -30 °C, was treated with Et₃N (1.338 mL, 9.60 mmol) and methanesulfonyl chloride (0.496 mL, 6.40 mmol). After 1 h, the reaction was quenched with H_2O and extracted with AcOEt. The organic layer was washed with saturated aqueous NaCl, dried (Na₂SO₄), and evaporated to drvness. The residue was taken up in dry DMSO (6 mL) and treated at rt with n-Bu₄NI (236 mg, 0.64 mmol) and NaCN (470 mg, 9.60 mmol). The solution was warmed to 70 °C, stirred for 4 h, cooled to rt, diluted with saturated aqueous NH₄Cl, and extracted with Et_2O to give, after chromatography (PE/Et₂O (7: 3)) pure 20 (518 mg, 82%). Anal. Found: C, 67.10; H, 9.60; N, 7.00. $C_{11}H_{19}NO_2$ requires C, 66.97; H, 9.71; N, 7.1 [α]_D = +21.1° (c 1.57, CHCl₃). $R_{f} = 0.46$ (PE/AcOEt (8:2)). IR (CHCl₃): ν_{max} 2931, 2871, 2248, 1454, 1353, 1189, 1121, 1063, 1023 cm⁻¹. ¹H NMR: δ 0.95 (3 H, t, CH₃CH₂), 1.40-2.00 (9 H, m, OCH₂(CH₂)₃-CHO, CH₂CH₃, CHCH₂CH₃), 2.47 and 2.52 (1 H, AB part of an ABX syst, CH_2CN of one diast, $J_{ab} = 16.6$, J_{ax} and $J_{bx} = 6.0$ and 6.1 Hz), 2.50 (1 H, d, CH₂CN of one diast, J = 6.0 Hz), 3.24 ($^{1}/_{2}$ H, dd, CHHOTHP of one diast, J = 8.0 and 9.9 Hz), 3.42 ($\frac{1}{2}$ H,

dd, CHHOTHP of one diast, J = 4.4 and 10.0 Hz), 3.42–3.60 and 3.74–3.90 (2 H, m, OCH₂CH₂), 3.65 ($^{1}/_{2}$ H, dd, CHHOTHP of one diast, J = 7.6 and 10.0 Hz), 3.83 ($^{1}/_{2}$ H, dd, CHHOTHP of one diast, J = 4.5 and 9.9 Hz), 4.52–4.64 (1 H, m, OCHO). ¹³C NMR: δ 11.20 and 11.24 (CH₃), 19.26, 19.30, 19.34, 19.54, 23.41, 23.62, 25.38 (×2), 30.48, 30.54 (CH₂C), 37.49 and 37.52 (CHCH₂OTHP), 62.09, 62.47, 68.18, 68.67 (CH₂O), 98.63 and 99.44 (OCHO), 118.67 and 118.79 (C=N).

(3R,2'R)- and (3R,2'S)-3-((Tetrahydropyran-2-yloxy)methyl)pentanals (4). A solution of 20 (407 mg, 2.06 mmol) in dry Et₂O (15 mL) was cooled to -35 °C and treated with 1 M DIBALH in toluene (4.12 mL). The temperature was allowed to rise slowly to -20 °C during 1 h. The reaction was quenched with AcOEt (12 mL), diluted with saturated aqueous Na,K tartrate, and stirred at rt for 1 h. Extraction with Et₂O gave, after chromatography ($PE/Et_2O(7:3)$), pure 4 as a colorless liquid (347 mg, 84%). Anal. Found: C, 65.65; H, 10.25. C₁₁H₂₀O₃ requires C, 65.97; H, 10.06. $[\alpha]_D = +24.1^\circ$ (c 2.185, CHCl₃). R_f = 0.50 (PE/AcOEt (8:2)). IR (CHCl₃): ν_{max} 2998, 2939, 2875, 2730, 1721 cm⁻¹. ¹H NMR: δ 0.94 (3 H, t, CH₃CH₂), 1.20-1.90 (8 H, m, OCH₂(CH₂)₃ and CH₂CH₃), 2.15-2.35 (1 H, m, CHCH₂-CHO), 2.30-2.60 (2 H, m, CH2CHO), 3.16 (1/2 H, dd, CHHOTHP of one diast, J = 7.9 and 9.5 Hz), 3.40 ($\frac{1}{2}$ H, dd, CHHOTHP of one diast, J = 4.6 and 9.6 Hz), 3.38-3.59 and 3.70-3.90 (2 H, m, OCH_2CH_2), 3.58 (1/2 H, dd, CHHOTHP of one diast, J = 8.0 and 9.6 Hz), 3.83 ($^{1}/_{2}$ H, dd, CHHOTHP of one diast, J = 4.7 and 9.5 Hz), 4.46-4.62 (1 H, m, OCHO), 9.76 (1/2 H, t, CH=O of one diast, J = 2.5 Hz), 9.79 ($\frac{1}{2}$ H, t, CH=O of one diast, J = 2.5 Hz).

Acknowledgment. We thank M.U.R.S.T. (60% and 40% Funds) and C.N.R. (Progetto Finalizzato Chimica Fine) for financial assistance.

Supplementary Material Available: Characterizing data of compounds 8a-c,e (2 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.